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In this paper, the optimal design parameters of tuned liquid column dampers (TLCD)

with non-uniform cross-sections for application to a SDOF structure in horizontal

motion are summarized. In the first part, optimization for the interacted structure

subjected to harmonic loading is revisited and the computation is facilitated by a non-

iterative analytical response solution (closed-form solution) proposed for expediting the

process. From both analytical and numerical inspections, some new findings were

clearly observed, including (i) the optimal head loss is inversely proportional to

excitation amplitude; while the optimal frequency tuning ratio is independent of the

excitation level; (ii) the minimal peak amplitude of the structure over all possible

frequencies occurs when the two resonant peaks in the structural response are equal,

and this applies to both damped and undamped structures; (iii) a uniform TLCD is

always the best choice under the same condition of structural damping, mass ratio and

horizontal length ratio of the TLCD; and (iv) the optimal performance is the same for the

cases with reciprocal cross-section ratios. Based on the conclusion in the first part, the

second part presents design tables containing lists of optimal parameters for non-

uniform (cross-section ratios 2 and 1
2) and uniform TLCDs as quick guidelines for

practical use. For completeness, these tables were also incorporated with the optimal

parameters for TLCDs under a white-noise type of loading, which are excerpted from a

previously published research. Some results of parametric studies observed from the

design tables were also addressed. Finally, a design example is used to demonstrate the

use of these design tables.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the newly developed construction technologies toward lighter and stronger materials have facilitated
the realization of more and more high-rise buildings in many urban areas where space usage is demanding. The typical
examples are the Petronas Twin Tower (452 m) in Kuala Lumpur, Malaysia, and Taipei 101 Building (508 m) in Taipei,
Taiwan and the under-construction super-high building—Burj Dubai (807.7 m) in Dubai. However, the down side with it is
the high susceptibility of their responses to wind loading, especially the induced acceleration magnification frequently
causes occupants’ discomfort. Thus, for structures such as these, it is very desirable to use control devices for the sake of
vibration suppression. Among many varieties of control devices, the tuned liquid column damper (termed as TLCD) that is
composed of fluid in a U-shape of liquid column container is a good candidate. During a motion, this device can dissipate
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Nomenclature

Ah cross-sectional area in the horizontal column
of a TLCD

Av cross-sectional area in the vertical column of a
TLCD

C0, C2, C3, C4 coefficients defined in Eq. (17)
F wind load on the structure
F̂ ¼ FT2

d=MLh non-dimensional F

g acceleration due to gravity
G coefficient defined in Eq. (11)
k ¼ o/odnon-dimensional excitation frequency
k1, k2, k3 three frequencies as defined in Fig. 5
L ¼ 2Lv+Lh total length of the liquid column of a TLCD
Le ¼ 2Lv+nLh effective length of the liquid column of a

TLCD
Lh horizontal column length of a TLCD
Lv vertical column length of a TLCD
m ¼ np/(n+p(1�n)) parameter related to n and p

M, C, K structural mass, damping and stiffness con-
stants

n ¼ p/(1�p(1�n)) parameter related to n and p

p ¼ Lh/L ratio of the horizontal length to total length of
the liquid column

t time
t̂ ¼ t=Td non-dimensional t

TA, TB, TC, TD, TE, TF coefficients defined in Eqs. (12) and
(15)

T
x̂F̂

frequency response function of x̂ induced by F̂

T
ŷF̂

frequency response function of ŷ induced by F̂

Td ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Le=2g

p
natural period of a TLCD

x displacement of the structure equipped with a
TLCD

x̂ ¼ x=Lh non-dimensional x

x̂0 amplitude of a harmonic x̂

x̂pðoriginalÞ original structural peak amplitude over all
possible frequencies

½x̂0�norm normalized x̂0

½x̂p�norm peak amplitude of ½x̂0�norm over all possible
frequencies

y displacement of the liquid surface
ŷ ¼ y=Lh non-dimensional y

ŷ0 amplitude of a harmonic ŷ

½ŷ0�norm normalized ŷ0
½ŷp�norm peak amplitude of ½ŷ0�norm over all possible

frequencies
b1 ¼ os/od frequency tuning ratio of the structure

versus TLCD
b1opt optimal frequency tuning ratio
Z head loss coefficient
Zopt optimal head loss coefficient
m ¼ rAhðLh þ 2nLvÞ=M mass ratio of the liquid versus

structure
n ¼ Av/Ah cross-sectional ratio of the vertical column

versus horizontal column
x ¼ C=2Mos damping ratio of the structure
xe effective damping ratio of the structure

equipped with a TLCD
r fluid density
jy amplitude of a harmonic y

jŷ ¼ jy=Lh non-dimensional jy

o excitation frequency
od ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=Le

p
natural frequency of a TLCD

os ¼
ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
natural frequency of the structure
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energy by the relative movement of the fluid passing through an orifice located in the liquid column. In terms of advantages
over other types of energy-dissipating dampers, the properties of TLCD (such as the natural frequency and damping) can be
reliably and precisely determined from the length of the liquid column and the orifice size.

The original idea of TLCD was developed by Sakai et al. [1] for suppression of horizontal motion of structures. After that,
quite a few research papers, namely Xu et al. [2], Hitchcock et al. [3], Balendra et al. [4], Min et al. [5] and Felix et al. [6],
have verified its effectiveness for suppressing wind-induced horizontal responses, among whom Hitchcock et al. [3] even
investigated a general type of TLCDs that have non-uniform cross-sections in the horizontal and vertical columns, termed
as liquid column vibration absorber (LCVA). Recently, the application of TLCDs was further extended to the suppression of
pitching motion for bridge decks (e.g., Xue et al. [7] and Wu et al. [8]). For the application to the control of horizontal
motion toward implementation, some researchers have spent efforts on determining optimal TLCD designs, such as Chang
et al. [9] and Chang [10] on undamped structures, Wu et al. [11] on damped structures, and Yalla et al. [12] on both damped
and undamped structures. Their results of optimal parameters were provided for the situation when the loading on
buildings is of a white-noise type, such as wide-banded along-wind loads. As for the across-wind loading which is more
likely to be of a harmonic type due to the vortex shedding effect (see Simiu and Scanlan [13]), the investigation of optimal
parameters can only be found in Gao et al. [14] to date. However, it contains quite limited results because of the
cumbersome computation performed by using direct simulation in the time domain. Performing such computation in the
optimization process is not practically feasible.

To gain more understanding on the optimal TLCD design, the first part of this paper revisits the optimal parametric
investigation for TLCDs under a harmonic type of wind loading. From literature review, the conventional approach for
obtaining the optimal parameters of an undamped structure equipped with a tuned mass damper (TMD) is to use the idea
of invariant points of the structural amplitude in the frequency domain [15]. The optimal frequency tuning ratio can be
determined by equating the amplitudes at the two invariant points, and the optimal damping ratio of the damper can be
obtained by averaging the two damping ratios that make the amplitude at the individual invariant point as flat as possible
(i.e., a local maximum occurs at the invariant point). For a damped structure, the above approach is no longer applicable
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because of inexistence of invariant points. In such a case, the optimal parameters can be determined by the numerical
optimization that directly minimizes the structural amplitude over all possible frequencies. In the TLCD application, due to
the fact that the TLCD damping is response-dependent (dependent on the liquid amplitude even if the damping term is
linearized), it is more straightforward to use direct optimization even though there still exist invariant points (see Section
4.2) in this approach for undamped structures.

Therefore, in this paper, the optimization is performed by directly minimizing the peak structural amplitude over all
possible frequencies using a non-iterative analytical response solution (closed-form solution) that was specifically derived
for harmonic loading to facilitate computation. In this way, the optimal parameters, such as the optimal tuning ratio and
head loss coefficient, and some other practically related information for design can be subsequently determined.

Based on the conclusion in the first part, the second part presents the design tables containing the complete lists of the
optimal parameters for both uniform (v ¼ 1) and non-uniform (v ¼ 2 and 1

2) TLCDs as quick guidelines for practical use.
These tables were also incorporated with the optimal parameters for TLCDs under a white-noise type of loading, which
were excerpted from a previous research by the authors [11]. Finally, a design example will be used to demonstrate the use
of these design tables.
2. Interaction equations in horizontal motion

The schematic diagram of a single-degree-of-freedom structure equipped with a TLCD in horizontal motion is shown in
Fig. 1. For generality, the cross-sections in horizontal and vertical columns of a TLCD can be non-uniform, depending on the
choice of the designer. Some presumptions for TLCDs in deriving the equations of motion include: (i) the fluid is
incompressible (i.e., the flow rate is constant), depicting that water is a good choice; (ii) the sloshing behavior on the liquid
surface is negligible (this is considerably satisfied when the structural frequency is as low as 0.5 Hz or even lower, which is
quite common for high-rise buildings); (iii) the in-plane width of the TLCD vertical column cross-section should be much
smaller than its horizontal length.

By using Lagrange’s equations and energy principles, the interaction equations of motion for the structure and liquid
surface motion in a TLCD can be expressed as (e.g., Chang et al. [9], Gao et al. [14])

M €xþ rAhð2nLv þ LhÞ€xþ rAhnLh €yþ C _xþ Kx ¼ FðtÞ (1)

and

rAhnLe €yþ rAhnLh €xþ ð1=2ÞrAhn
2Zj_yj_yþ 2rAhgny ¼ 0, (2)

respectively. A brief derivation can be referred to Appendix A for readers’ interest. In Eqs. (1) and (2), x and y denote
displacements of the structure and liquid surface, respectively; M, C, K are structural mass, damping and stiffness
constants; F(t) is external loading; Lh and Lv are horizontal and vertical column lengths; Ah and Av are cross-sectional areas
in horizontal and vertical columns, respectively; r is fluid density; g is acceleration due to gravity; n ¼ Av/Ah is cross-
sectional ratio of the vertical column versus horizontal column; Le ¼ 2Lv+nLh is defined as the effective length; and Z is head
loss coefficient. The head loss can be considered as the overall head loss induced by flow motion in the liquid column,
although it is mainly induced by the flow passing through the orifice. The effective length Le will be the total length
L ¼ 2Lv+Lh of the liquid column at n ¼ 1. From Eq. (2), it is easily observed that the natural frequency of a TLCD is
od ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=Le

p
rad=s, and the natural period is Td ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Le=2g

p
seconds accordingly.

For a multiple-degree-of-freedom system with a specified mode to be controlled, the modal equation should be
obtained by performing modal decomposition with the mode shape component at the location where the TLCD is installed
set to one. Then the corresponding modal mass, damping and stiffness will be used as the structural properties M, C, K in
the formula described above.
Av

M

K

F(t)

x

density ρ

Ah

Lh

y
y

orifice Lv

C

Fig. 1. SDOF damped structure equipped with TLCD under external load.
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Fig. 2. Hysteretic loop of the damping force in a TLCD.
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2.1. Non-dimensionalization

For conciseness of analysis and a better presentation, the equations of motion in Eqs. (1) and (2) were non-
dimensionalized before further derivation. Thus, the resultant forms of the non-dimensionalized equations (1) and (2) can
be expressed as

ð1þ mÞx̂00 þ mmŷ00 þ 4pxb1x̂0 þ 4p2b2
1x̂ ¼ F̂ðt̂Þ (3)

ŷ00 þ nx̂00 þ 1
2nnZŷ0jŷ0j þ 4p2ŷ ¼ 0 (4)

in which the dimensionless variables are defined as x̂ ¼ x=Lh; ŷ ¼ y=Lh; t̂ ¼ t=Td; F̂ ¼ FT2
d=MLh; x ¼ C=2Mos is damping

ratio of the structure with os ¼
ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
being the natural frequency of the structure; b1 ¼ os=od is frequency tuning ratio

of the structure versus TLCD; p ¼ Lh/L is ratio of the horizontal length to total length of the liquid column; m ¼
rAhðLh þ 2nLvÞ=M is mass ratio of the liquid versus structure; m and n are two parameters related to p and n, defined as
n ¼ p/(1�p(1�n)) and m ¼ np/(n+p(1�n)). In fact, the value of n is the ratio of Lh versus Le, while m is the ratio of nLh versus
(Lh+2nLv). Accordingly, the total length L can be expressed as L ¼ nLe/p ¼ Le/(1�p(1�n)). Note that in Eqs. (3) and (4), the
notation prime (0) represents the differentiation with respect to the dimensionless time t̂.

2.2. Equivalent damping for a harmonic type of loading

Under a harmonic type of loading with a frequency o, an equivalent viscous damping in the form of ð4=3pÞrAhn2Zjyo_y
(jy is the amplitude of y) can be used to replace the damping term ð12ÞrAhn2Zj_yj_y in Eq. (2) by a stochastic approach [14].
Alternatively it can be obtained by equating the dissipated energy from both damping expressions within a cycle as follows.
Let the harmonic response y be expressed by y ¼ jy sin ot in which jy is the amplitude of y, then the damping force can
be written as Fd ¼ ð

1
2ÞrAhn2Zj_yj_y ¼ ð12ÞrAhn2Zj2

yo2 cos ot � j cos otj. The hysteretic loop of such a damping force in a full
cycle was plotted in Fig. 2 for illustration. In the first quarter cycle, the relation between y and Fd is obtained as

Fd

ð1=2ÞrAhn2Zj2
yo2
¼ 1�

y

jy

 !2

(5)

Hence, the dissipated energy by the damping force in the quarter cycle is the area from 0 to jy under the Fd curve. The
resulting dissipated energy in a full cycle is integrated to be ð43ÞrAhn2Zo2j3

y . Equating this to the dissipated energy
pCeqoj2

y caused by the equivalent viscous damping force Ceq _y leads to

Ceq ¼ ð4=3pÞrAhn
2Zojy (6)

With the damping term in Eq. (4) replaced by Ceq _y, the non-dimensionalized equation can be expressed as

ŷ00 þ nx̂00 þ ð8=3ÞnnZjŷkŷ0 þ 4p2ŷ ¼ 0 (7)

in which k ¼ o/od is dimensionless excitation frequency; and jŷ ¼ jy=Lh is the dimensionless amplitude of y. The
accuracy of such an approximation will be verified in the numerical simulation presented in Section 3.

3. Analytical solution to harmonic loading

This section gives the derivation of the analytical solution of the interaction equations (3) and (7). By replacing x̂, ŷ and

F̂ðt̂Þ in Eqs. (3) and (7) by the complex harmonic functions x̂0ei2pkt̂ , ŷ0ei2pkt̂ and F̂0ei2pkt̂ ði ¼
ffiffiffiffiffiffiffi
�1
p
Þ, respectively, the
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complex amplitude x̂0 and ŷ0 can be obtained as functions of the force amplitude F̂0, i.e.,

x̂0 ¼ T
x̂F̂

F̂0 (8)

ŷ0 ¼ T
ŷF̂

F̂0 (9)

in which T
x̂F̂

and T
ŷF̂

represent the frequency response functions of x̂ and ŷ induced by F̂, i.e.,

T
x̂F̂
¼

ð1� k2
Þ þ i

4

3pk2nnZjŷ

� �
G

; T
ŷF̂
¼

nk2

G
(10)

with

G ¼ ðTB þ TC �jŷÞ þ iðTD þ TE �jŷÞ (11)

TB ¼ 4p2ð1� k2
Þ½b2

1 � k2
ð1þ mÞ� � 4p2k4mmn; TC ¼ �

32
3 pk3nnZxb1;

TD ¼ 8p2kxb1ð1� k2
Þ; TE ¼

16
3 pk2nnZ½b2

1 � k2
ð1þ mÞ� (12)

By using the relation jŷ ¼ jŷ0j, the substitution of Eqs. (10)–(12) into square of the absolute value on both sides of Eqs. (8)
and (9) leads to

jx̂0j
2 ¼

TF � F̂
2
0

ðTB þ TC � jŷ0jÞ
2 þ ðTD þ TE � jŷ0jÞ

2
(13)

jŷ0j
2 ¼

TA � F̂
2
0

ðTB þ TC � jŷ0jÞ
2 þ ðTD þ TE � jŷ0jÞ

2
(14)

in which

TF ¼ ð1� k2
Þ2 þ

4

3p k2nnZjŷ0j

� �2

; TA ¼ n2k4 (15)

By further rearranging Eq. (14) into a polynomial equation in jŷ0j as

C4jŷ0j
4 þ C3jŷ0j

3 þ C2jŷ0j
2 þ C0 ¼ 0 (16)

in which

C4 ¼ T2
C þ T2

E ; C3 ¼ 2ðTB � TC þ TD � TEÞ; C2 ¼ T2
B þ T2

D; C0 ¼ �TA � F̂
2
0, (17)

the value of jŷ0j can be solved analytically. Based on the extensive simulation from Eq. (17), it can be shown that jŷ0j has a
unique positive or zero solution. Consequently, the frequency response functions T

x̂F̂
, T

ŷF̂
and the amplitude jx̂0j can be

obtained by substituting the solution of jŷ0j back into Eqs. (10) and (13), respectively. It should be noticed that the system is

in fact not linear because both of the frequency response functions T
x̂F̂

and T
ŷF̂

are functions of F̂0.

To verify the accuracy of the approximation of damping term adopted in Eq. (7), extensive comparisons were made
between the analytical solutions and those from direct simulation of the original form (Eqs. (3) and (4)) in time domain.
Three cases out of many were demonstrated in Fig. 3, each case uses the cross-sectional ratio v equal to 1, 2 and 1

2,
respectively. As shown in Fig. 3, the comparisons were very satisfactory. However, the computation effort involved in the
direct simulation of the original equations was way far cumbersome.

4. Optimization and results

In this section, the optimization problem for a structure equipped with a TLCD under a harmonic load is first defined,
and optimization is performed numerically to determine the optimal parameters.

4.1. Performance index

In most civil engineering applications, the excitation frequency from harmonic disturbance (such as vortex shedding in
the across-wind direction) usually varies and is not certain. Hence it is more reasonable to consider the worst case of
structural response in all possible frequencies while response is minimized. Let the normalized structural and liquid
responses be defined as

½x̂0�norm ¼ jx̂0j=x̂pðoriginalÞ (18)
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Fig. 3. Comparisons of the analytical solution and direct simulation in three cases (Case I: v ¼ 1, x ¼ 1%, m ¼ 1%, p ¼ 0.6, F̂0 ¼ 0:01, Z ¼ 10, b1 ¼ 1, Case II:

v ¼ 2, x ¼ 1%, m ¼ 2%, p ¼ 0.7, F̂0 ¼ 0:01, ¼ 10, b1 ¼1 and Case III: v ¼ 0.5, x ¼ 2%, m ¼ 1%, p ¼ 0.8, F̂0 ¼ 0:01, Z ¼ 10, b1 ¼ 1): (a) x̂0 versus k and (b)

ŷ0 versus k.
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and

½ŷ0�norm ¼ jŷ0j=x̂pðoriginalÞ (19)

in which x̂pðoriginalÞ is the original structural peak amplitude (worst case) over all possible frequencies. The value of
x̂pðoriginalÞ can be derived from the equation of motion of the original structure, i.e., Eq. (3) with m set to zero, i.e.,

x̂pðoriginalÞ ¼
F̂0

4p2b2
1

�
1

2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q (20)

With this, the performance index (P.I.) is defined as the peak amplitude (worst case) of ½x̂0�norm over all possible
frequencies, i.e.,

P:I: ¼ ½x̂p�norm ¼Max
k2R
½x̂0�norm (21)

According to this definition, the optimization (minimization) on the performance index can be categorized as a kind of the
so-called Min–Max problem in which ½x̂p�norm is actually the HN norm of ½x̂0�norm in Eq. (18) [16]. A smaller ½x̂p�norm

represents a better performance.
In addition, the overall effective damping ratio xe for the structure can be calculated by equating ½x̂p�norm � x̂pðoriginalÞ to

ðF̂0=4p2b2
1 � 1=2xe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

e

q
Þ. The substitution of Eq. (20) leads to

x4
e � x2

e þ x2
ð1� x2

Þ=½x̂p�
2
norm ¼ 0 (22)
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Hence, the equivalent damping ratio xe can be obtained by

xe ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

ð1� x2
Þ=½x̂p�

2
norm

q
2

0
@

1
A

1=2

�
x

½x̂p�norm
(23)

A larger xe represents better performance.
Similarly, the normalized peak amplitude (worst case) of ½ŷ0�norm over all possible frequencies can be also defined as

½ŷp�norm ¼Max
k2R
½ŷ0�norm (24)

The value of ½ŷp�norm is to be used for checking if the liquid surface displacement exceeds the length of the vertical liquid
column.

4.2. Determination of optimal parameters n, Z and b1

As shown in Eqs. (13) and (18), the independent parameters for determining ½x̂p�norm include the structural damping
ratio x, mass ratio m, cross-sectional ratio n, horizontal length ratio p, non-dimensional force amplitude F̂0, head loss
coefficient Z and frequency tuning ratio b1. Since the structural damping ratio x and F̂0 shall be known as a priori in the
application, and the mass ratio m and horizontal length ratio p depend on the choices of the designer, the parameters
remained to be optimized are actually n, Z and b1.

In order to have better idea of how Z and b1 affect the performance of TLCDs, the value of n is firstly assumed to be given
by the designer. In fact, the value of n is normally up to the choice of the designer in the consideration of the provided space
because it is linked to the horizontal column length of a TLCD (see Section 5 for detailed discussion). Illustrated in Fig. 4 is
the distribution surface of ½x̂p�norm for a damped structure. Because of the smoothness of the distribution, any numerical
optimization techniques such as the gradient method can be used to locate the optimal parameters Z and b1. In this paper,
the program ‘‘fminsearch’’ in the software MATLAB was used.

From the results of extensive numerical optimization, it was indicated that the minimal ½x̂p�norm (i.e., the optimal case)
always occurs when the two resonant peaks are equal, and this applies to both damped and undamped structures. To
demonstrate this observation, the plots of ½x̂0�norm and ½ŷ0�norm versus the non-dimensional excitation frequency k are
shown in Figs. 5 and 6 for a damped structure (n ¼ 2, x ¼ 2%, m ¼ 1%, p ¼ 0.8 and F̂0 ¼ 0:01) and an undamped structure
(n ¼ 2, x ¼ 0, m ¼ 1%, p ¼ 0.8 and F̂0 ¼ 0:01), respectively. The plots for the optimal case (b1opt ¼ 1.0105, Zopt ¼ 25.436 in
Fig. 5 and b1opt ¼ 1.0080, Zopt ¼ 13.0810 in Fig. 6) were denoted by the black solid curves, while the other two curves
represent the cases using other values of Z but keeping b1 optimal. In the optimal case, the frequencies at k1, k2 and k3 as
denoted in Fig. 5(a) and (b) are three important frequencies that provide useful information on the excitation frequencies
where the worst cases occur. They will be given in the lists of design tables presented in Section 6.

The extensive numerical results further reveal several important findings, which are described in the following:
(1)
 For an undamped structure, by varying the value of Z but keeping b1the same, there exist two invariant points in jx̂0j

plot and one invariant point in jŷ0j plot. As shown in Fig. 6, the two invariant points in the jx̂0j plot even share the same
0.5
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Fig. 4. Distribution surface of ½x̂p�norm on the Z–b1 plane for a case with parameters v ¼ 2, x ¼ 2%, m ¼ 1%, p ¼ 0.8, and F̂0 ¼ 0:01.
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and (b) ½ŷ0�norm versus k.
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amplitude when the optimal b1is adopted, which is actually the criterion used in the Den Hartog approach for
determining the optimal tuning ratio for TMDs [15].
(2)
 The optimal head loss is inversely proportional to external force amplitude, which, however, has no effect on the
optimal tuning ratio b1, ½x̂p�norm and ½ŷp�norm. In fact, this can be observed theoretically. Because of the co-occurrence of
Zjŷ0j in Eqs. (12)–(15), the values of jŷ0j and jx̂0j solved from Eq. (14) (or Eq. (16)) and Eq. (13) are proportional to F̂0 as
long as Zjŷ0j remains constant. Thus, the external force amplitude F̂0 has no effect on the optimal tuning ratio b1optand
the associated values of ½x̂p�norm, ½ŷp�norm, xe, k1, k2 and k3. A constant value of Zjŷ0j implies that the optimal head loss
coefficient Zoptis inversely proportional to the force amplitude F̂0.
(3)
 In case that the parameter n is also to be optimized, then the optimal case always occurs at n ¼ 1 under the same values
of x, m and p. For demonstration, the curves of minimal ½x̂p�norm by varying v in three different cases of x, m and p are
shown in Fig. 7. As observed in Fig. 7, the minimal ½x̂p�norm indeed occurs at n ¼ 1, which indicates that using uniform
cross-sections for the liquid columns is always the best choice under the same condition of structural damping, mass
ratio and horizontal length ratio of the TLCD.
(4)
 The optimal performance is the same for the cases with reciprocal cross-sectional ratios. Suppose that n1 and n2 are
related by n2 ¼ 1/n1, then it implies

Z2 ¼
n1n2

1

n2n2
2

Z1 (25)

and

jŷ02j ¼
n2

n1
jŷ01j (26)
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These two relations can be constructed according to the following theoretical observation. Due to the fact that (i) m � n ¼

p2=½1þ ð1=vþ v� 2Þpð1� pÞ� is the same for both cases, and hence TB and TD are the same if b1 is the same; (ii) the co-
occurrence of nnZjŷ0j in the formulation (see Eqs. (12)–(15)); and (iii) TA is proportional to n2, therefore the solution of jŷ02j

in Eq. (16) is equal to n2/n1 multiplied by jŷ01j if and only if n2n2Z2 is equal to n1n1Z1=ðn2=n1Þ. Accordingly, jx̂02j should be
equal to jx̂01j by Eq. (13). In consequence, the optimization process will just keep the optimal parameters, such as the
optimal tuning ratio b1opt and the associated values of ½x̂p�norm, xe, k1, k2 and k3 unchanged. The same ½x̂p�norm implies the
same performance.

5. Optimal design tables

In this section, design tables containing the lists of the optimal parameters for uniform (v ¼ 1) and non-uniform (v ¼ 2
and 1

2) TLCDs were presented in Tables 1–3, 4–6 and 7, respectively, as quick guidelines for practical use. More design tables
for other configurations in v can be referred to URL address: http://www.ce.tku.edu.tw/�jcwu/research/tlcd.html in
readers’ interest. Aside from the optimal parameters b1opt and Zopt, the associated values of ½x̂p�norm, ½ŷp�norm, xe and k1, k2

and k3 as defined in Section 4 were all tabulated as the necessary information for design. It can be observed from Fig. 4
that the performance is not sensitive in the vicinity of Zopt. Therefore, in order to take into account the possible uncertainty
existing in practice, some efforts have been made to include the range of Z that corresponds to 5% degradation from
the optimal case, as shown in Column (3) of Tables 1–6. These values of Z are expressed as ‘‘95%’’ in the same columns
of Zopt.

To make the design tables more complete and useful for practical use, they were also incorporated with the optimal
parameters for TLCDs under a white-noise type of loading, which were excerpted from a previously published research by
the authors [11]. In Wu et al. [11], due to the random nature in the responses, the rms value of the structural displacement
was defined as the performance index for optimal evaluation. To design TLCDs for structures subjected to a white-noise
type of loading, the readers can refer to that paper for detailed discussion.

The parametric studies according to Tables 1–6 (nZ1) also indicated that (i) an increase in mass ratio m induces an
increase in optimal head loss Zopt but a decrease in optimal tuning ratio 1=b1optð¼ od=osÞ, and also induces a better
performance while the two resonant peaks are increasingly apart; (ii) an increase in horizontal length ratio p induces an
increase in optimal head loss Zopt but a decrease in optimal tuning ratio 1=b1optð¼ od=osÞ, and also induces a better
performance while the two resonant peaks are increasingly apart.

In the space-restricted area, there are two ways to shorten the horizontal space requirement for TLCDs, that is, by either
choosing v larger than 1 or p as small as 0.5–0.6 or both. As observed from the design tables (such as v ¼ 2 in Tables 4–6),
choosing a v larger than 1 is more preferable in that the performance downgraded is less.

Choosing v smaller than 1 is rarely suggested because it will elongate the horizontal liquid column length. However, in
the situation when a higher frequency is tuned, the resulting short horizontal liquid column length might be too close to
the dimension of TLCD cross-sections. In that case, the solution is to choose v smaller than 1. According to point (4)
described in Section 4, the design tables for v smaller than 1 can be directly modified from those for v larger than 1 if the
values of v are reciprocal to each other. Thus, the Columns (3) and (5) in Tables 1–3 for the case of v ¼ 2 can be modified to
be those for the case of v ¼ 1

2 by using Eqs. (25) and (26). For example, the optimal parameters for v ¼ 1
2 and x ¼ 1% was

tabulated in Table 7. The results for other damping cases shall be accordingly generated, although they were not presented
in the paper due to page limitation. It should be noted that the results of parametric studies in Table 7 (i.e., no1) basically
follows the same trend as mentioned previously for Tables 1–6 (i.e., nZ1) except that the value of Zopt does not necessarily
increase with the horizontal length ratio p.
6. A design example

To demonstrate the use of the design tables presented, a 75-story building used in Chang et al. [9] is adopted as the
example for TLCD designs under harmonic loading. The first mode properties of this building are M ¼ 4.61�107 N s2/m,
C ¼ 1.04�106 N s/m (corresponding to x ¼ 1%) and K ¼ 5.83�107 N/m (os ¼ 0.179 �2p rad/s accordingly). Given the
harmonic load in a magnitude F0 ¼ 5.0�105 N, the step-by-step procedures for TLCD designs are stated as follows:
(1)
 The first trial is to choose a uniform TLCD (v ¼ 1) because the performance is the best. With a horizontal length ratio p

chosen as 0.7 and a mass ratio m as 0.01, the optimal tuning ratio 1/b1opt ¼ od/os is 0.9915 according to Table 1.

Therefore, the total length of the TLCD, L, is 15.779 m by following od ¼
ffiffiffiffiffiffiffiffiffiffiffi
2g=L

p
¼ os � ð1=b1optÞ ¼ 1:1151 rad=s

(i.e., Td ¼ 5.6346 s). The horizontal length Lh can be obtained as 11.045 m. Suppose that this horizontal length exceeds
the space limit, say 10 m, then the second option is to use non-uniform TLCD design. If a cross-sectional ratio v ¼ 2 is
picked, the frequency tuning ratio 1=b1opt ¼ od=os is 0.9918 according to Table 4. Therefore, the effective length of the

TLCD, Le, is 15.7674 m by following od ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=Le

p
¼ os � ð1=b1optÞ ¼ 1:1155 rad=s (i.e., Td ¼ 5.6326 s). By the relation

Lh ¼ Le � n ¼ Le � p=ð1� pð1� nÞÞ, the horizontal length Lh can be obtained as 6.4925 m, which can be allowed to be
installed within the space limit. The total length L ( ¼ Lh/p) is 9.2750 m.

http://www.ce.tku.edu.tw/~jcwu/research/tlcd.html
http://www.ce.tku.edu.tw/~jcwu/research/tlcd.html


ARTICLE IN PRESS

Table 1

Optimal parameters for TLCD designs with n ¼ 1 and x ¼ 1%.

p 1

b1opt
¼
od

os

Harmonic loading

Zopt �10�2=F̂0

� �
x̂p
� �

norm ½ŷp�norm xe (percent) k1;2;3 ¼ o1;2;3=od

95–100–95 percent

White-noise loading

Zoptð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�4=S

F̂

q
Þ E½x̂2

�norm E½ŷ2
�norm

xe (percent) –

95–100–95 percent

(1) (2) (3) (4) (5) (6) (7)

n ¼ 1, x ¼ 1%, m ¼ 0.01

0.5 0.9930 6.073–9.519–12.543 0.379 2.640 2.64 0.981, 1.021, 0.994

0.9942 1.702–3.474–7.445 0.490 20.626 2.04 –

0.6 0.9923 6.898–10.687–13.765 0.334 2.343 2.99 0.978, 1.025, 0.992

0.9939 1.853–3.623–7.369 0.437 18.954 2.29 –

0.7 0.9915 7.722–11.841–15.031 0.299 2.108 3.34 0.974, 1.029, 0.990

0.9935 1.987–3.771–7.398 0.395 17.478 2.53 –

0.8 0.9906 8.535–12.849–16.320 0.271 1.922 3.69 0.971, 1.033, 0.987

0.9931 2.110–3.918–7.482 0.360 16.184 2.78 –

0.9 0.9897 9.365–14.023–17.632 0.247 1.760 4.05 0.968, 1.037, 0.985

0.9926 2.225–4.063–7.597 0.330 15.047 3.03 –

n ¼ 1, x ¼ 1%, m ¼ 0.02

0.5 0.9866 15.465–23.523–30.091 0.299 1.498 3.35 0.974, 1.029, 0.989

0.9886 3.983–7.545–14.769 0.392 8.776 2.55 –

0.6 0.9854 17.773–26.563–33.740 0.260 1.316 3.85 0.970, 1.035, 0.986

0.9880 4.323–7.955–15.033 0.345 7.885 2.90 –

0.7 0.9839 20.052–29.275–37.467 0.231 1.178 4.34 0.965, 1.042, 0.982

0.9873 4.632–8.351–15.396 0.308 7.146 3.25 –

0.8 0.9822 22.494–33.127–41.220 0.207 1.055 4.84 0.961, 1.047, 0.981

0.9865 4.917–8.731–15.805 0.278 6.527 3.60 –

0.9 0.9804 24.873–36.385–45.016 0.187 0.960 5.34 0.957, 1.053, 0.978

0.9856 5.183–9.096–16.234 0.253 6.004 3.95 –

n ¼ 1, x ¼ 1%, m ¼ 0.03

0.5 0.9805 26.998–40.511–51.051 0.257 1.066 3.89 0.970, 1.036, 0.986

0.9831 6.528–11.979–22.557 0.340 5.242 2.94 –

0.6 0.9786 31.289–46.472–57.869 0.223 0.928 4.49 0.964, 1.043, 0.983

0.9823 7.083–12.697–23.246 0.296 4.657 3.38 –

0.7 0.9765 35.596–52.253–64.770 0.196 0.823 5.10 0.959, 1.050, 0.979

0.9812 7.589–13.383–24.017 0.263 4.185 3.80 –

0.8 0.9741 39.966–58.169–71.748 0.175 0.739 5.71 0.954, 1.058, 0.976

0.9800 8.055–14.030–24.814 0.236 3.798 4.24 –

0.9 0.9714 44.378–64.132–78.790 0.158 0.671 6.33 0.950, 1.067, 0.973

0.9788 8.490–14.648–25.614 0.214 3.475 4.67 –

n ¼ 1, x ¼ 1%, m ¼ 0.04

0.5 0.9744 40.181–59.503–74.714 0.231 0.838 4.34 0.966, 1.041, 0.983

0.9778 9.261–16.677–30.701 0.305 3.619 3.28 –

0.6 0.9721 46.835–68.936–85.288 0.199 0.725 5.03 0.960, 1.050, 0.980

0.9766 10.048–17.735–31.872 0.265 3.193 3.77 –

0.7 0.9693 53.524–78.000–95.976 0.175 0.641 5.74 0.954, 1.058, 0.976

0.9753 10.765–18.734–33.097 0.234 2.854 4.27 –

0.8 0.9661 60.220–86.624–106.753 0.156 0.575 6.44 0.949, 1.068, 0.972

0.9738 11.426–19.675–34.325 0.209 2.580 4.78 –

0.9 0.9626 67.114–96.218–117.689 0.140 0.521 7.15 0.944, 1.078, 0.970

0.9721 12.040–20.564–35.526 0.189 2.353 5.29 –

n ¼ 1, x ¼ 1%, m ¼ 0.05

0.5 0.9685 54.867–81.047–100.689 0.212 0.693 4.72 0.963, 1.046, 0.981

0.9725 12.141–21.586–39.134 0.280 2.710 3.57 –

0.6 0.9656 64.132–93.760–115.500 0.182 0.599 5.50 0.956, 1.056, 0.977

0.9711 13.172–23.006–40.827 0.242 2.379 4.13 –

0.7 0.9623 130.509–106.811–73.576 0.159 0.527 6.29 0.950, 1.066, 0.974

0.9695 14.110–24.337–42.541 0.213 2.119 4.69 –

0.8 0.9584 83.069–119.471–145.660 0.142 0.472 7.08 0.944, 1.077, 0.970

0.9676 14.975–25.586–44.224 0.190 1.910 5.26 –

0.9 0.9541 92.721–132.435–161.011 0.127 0.427 7.87 0.938, 1.088, 0.967

0.9655 15.776–26.760–45.851 0.172 1.738 5.81 –

Bold values indicate under white-noise loading (from Wu et al. [11]).

Ital values indicate under harmonic loading.

J.-C. Wu et al. / Journal of Sound and Vibration 326 (2009) 104–122114
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Table 2

Optimal parameters for TLCD designs with n ¼ 1 and x ¼ 2%.

p 1

b1opt
¼
od

os

Harmonic loading

Zopt �10�2=F̂0

� �
x̂p
� �

norm ½ŷp�norm xe (percent) k1;2;3 ¼ o1;2;3=od

95–100–95 percent

White-noise loading

Zoptð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�4=S

F̂

q
Þ E½x̂2

�norm E½ŷ2
�norm

xe (percent) –

95–100–95 percent

(1) (2) (3) (4) (5) (6) (7)

n ¼ 1, x ¼ 2%, m ¼ 0.01

0.5 0.9920 8.078–14.279–20.202 0.564 3.771 3.55 0.979, 1.024, 0.999

0.9939 1.658–4.465–13.532 0.691 24.965 2.89 –

0.6 0.9912 8.937–15.240–20.906 0.514 3.480 3.89 0.976, 1.027, 0.997

0.9936 1.658–4.527–12.137 0.640 24.274 3.13 –

0.7 0.9903 9.791–16.260–21.822 0.472 3.225 4.24 0.973, 1.032, 0.996

0.9931 2.015–4.607–11.366 0.595 23.413 3.36 –

0.8 0.9893 10.638–17.338–22.864 0.436 3.002 4.59 0.969, 1.036, 0.994

0.9927 2.157–4.699–10.913 0.555 22.491 3.60 –

0.9 0.9881 11.467–18.170–23.980 0.405 2.820 4.94 0.966, 1.040, 0.990

0.9922 2.284–4.796–10.642 0.520 21.569 3.85 –

n ¼ 1, x ¼ 2%, m ¼ 0.02

0.5 0.9854 19.609–32.592–43.570 0.472 2.289 4.24 0.972, 1.032, 0.996

0.9882 4.041–9.205–22.596 0.592 11.790 3.38 –

0.6 0.9839 21.989–35.471–46.566 0.423 2.076 4.73 0.968, 1.038, 0.992

0.9876 4.429–9.468–21.476 0.538 11.130 3.72 –

0.7 0.9823 24.340–38.188–49.825 0.383 1.901 5.23 0.964, 1.044, 0.989

0.9868 4.767–9.749–20.940 0.492 10.483 4.07 –

0.8 0.9804 26.743–41.405–53.263 0.350 1.748 5.72 0.959, 1.050, 0.986

0.9859 5.070–10.035–20.714 0.454 9.876 4.41 –

0.9 0.9783 29.143–44.527–56.815 0.322 1.619 6.22 0.955, 1.056, 0.983

0.9850 5.346–10.322–20.668 0.421 9.318 4.75 –

n ¼ 1, x ¼ 2%, m ¼ 0.03

0.5 0.9790 33.237–53.209–70.083 0.420 1.694 4.77 0.967, 1.038, 0.992

0.9827 6.694–14.219–32.002 0.532 7.438 3.76 –

0.6 0.9770 37.614–58.957–76.140 0.373 1.519 5.37 0.962, 1.046, 0.988

0.9818 7.296–14.737–31.177 0.478 6.911 4.18 –

0.7 0.9746 41.964–64.403–82.520 0.335 1.379 5.98 0.957, 1.053, 0.984

0.9807 7.828–15.264–30.933 0.434 6.429 4.61 –

0.8 0.9719 46.378–70.170–89.125 0.304 1.261 6.59 0.952, 1.061, 0.980

0.9794 8.308–15.786–30.996 0.397 5.996 5.04 –

0.9 0.9690 50.860–76.254–95.908 0.279 1.161 7.20 0.948, 1.070, 0.977

0.9780 8.750–16.297–31.234 0.366 5.611 5.46 –

n ¼ 1, x ¼ 2%, m ¼ 0.04

0.5 0.9728 48.531–76.012–99.152 0.384 1.362 5.21 0.964, 1.044, 0.988

0.9773 9.533–19.445–41.634 0.489 5.321 4.09 –

0.6 0.9702 55.255–85.076–108.876 0.339 1.213 5.91 0.958, 1.053, 0.984

0.9760 10.364–20.254–41.154 0.437 4.893 4.58 –

0.7 0.9672 62.051–94.091–119.005 0.303 1.094 6.60 0.952, 1.062, 0.980

0.9746 11.102–21.056–41.251 0.394 4.515 5.08 –

0.8 0.9637 68.830–102.634–129.392 0.274 0.998 7.31 0.947, 1.072, 0.976

0.9730 11.773–21.838–41.649 0.359 4.184 5.57 –

0.9 0.9599 75.791–112.048–140.047 0.250 0.916 8.01 0.941, 1.081, 0.973

0.9712 12.390–22.593–42.208 0.330 3.895 6.06 –

n ¼ 1, x ¼ 2%, m ¼ 0.05

0.5 0.9668 65.324–101.453–130.412 0.358 1.146 5.59 0.961, 1.049, 0.986

0.9720 12.516–24.844–51.451 0.457 4.089 4.38 –

0.6 0.9636 74.713–113.768–144.319 0.315 1.017 6.37 0.954, 1.059, 0.982

0.9705 13.586–25.969–51.360 0.406 3.732 4.91 –

0.7 0.9599 84.090–125.599–158.676 0.280 0.916 7.15 0.948, 1.069, 0.977

0.9688 14.542–27.063–51.836 0.365 3.424 5.48 –

0.8 0.9558 93.696–138.345–173.435 0.253 0.832 7.94 0.942, 1.080, 0.973

0.9668 15.411–28.126–52.598 0.331 3.158 6.04 –

0.9 0.9512 103.571–151.932–188.559 0.230 0.762 8.73 0.936, 1.092, 0.970

0.9646 16.210–29.140–53.506 0.303 2.929 6.60 –

Bold values indicate under white-noise loading (from Wu et al. [11]).

Italic values indicate under harmonic loading.
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Table 3

Optimal parameters for TLCD designs with n ¼ 1 and x ¼ 3%.

p 1

b1opt
¼
od

os

Harmonic loading

Zopt �10�2=F̂0

� �
x̂p
� �

norm ½ŷp�norm xe (percent) k1;2;3 ¼ o1;2;3=od

95–100–95 percent

White-noise loading

Zoptð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�4=S

F̂

q
Þ E½x̂2

�norm E½ŷ2
�norm

xe (percent) –

95–100–95 percent

(1) (2) (3) (4) (5) (6) (7)

n ¼ 1, x ¼ 3%, m ¼ 0.01

0.5 0.9908 9.921–19.637–30.273 0.671 4.328 4.47 0.977, 1.025, 0.999

0.9937 1.475–5.456–24.934 0.793 25.076 3.78 –

0.6 0.9899 29.936–20.439–10.878 0.624 4.088 4.81 0.974, 1.030, 0.999

0.9933 1.730–5.430–20.020 0.750 25.295 4.00 –

0.7 0.9888 11.783–21.032–30.161 0.583 3.885 5.15 0.970, 1.034, 0.998

0.9928 1.937–5.443–17.400 0.710 25.156 4.23 –

0.8 0.9876 12.668–21.931–30.715 0.546 3.681 5.50 0.967, 1.038, 0.996

0.9923 2.112–5.479–15.826 0.673 24.801 4.46 –

0.9 0.9864 13.553–23.018–31.479 0.514 3.487 5.84 0.965, 1.043, 0.995

0.9917 2.264–5.531–14.809 0.640 24.316 4.69 –

n ¼ 1, x ¼ 3%, m ¼ 0.02

0.5 0.9839 23.584–42.090–60.082 0.583 2.761 5.15 0.971, 1.034, 0.998

0.9879 3.892–10.863–34.440 0.707 12.692 4.24 –

0.6 0.9823 26.031–44.431–61.818 0.533 2.565 5.64 0.966, 1.040, 0.996

0.9872 4.366–10.979–30.489 0.657 12.410 4.57 –

0.7 0.9804 28.514–47.376–64.243 0.491 2.384 6.12 0.962, 1.047, 0.993

0.9863 4.761–11.145–28.288 0.612 12.026 4.90 –

0.8 0.9784 30.957–50.198–67.078 0.454 2.229 6.62 0.958, 1.053, 0.990

0.9854 5.102–11.338–26.970 0.573 11.599 5.24 –

0.9 0.9761 33.406–53.202–70.183 0.423 2.091 7.11 0.953, 1.060, 0.987

0.9844 5.406–11.547–26.154 0.538 11.162 5.58 –

n ¼ 1, x ¼ 3%, m ¼ 0.03

0.5 0.9773 39.336–66.812–92.675 0.530 2.095 5.67 0.966, 1.041, 0.995

0.9823 6.612–16.457–45.113 0.651 8.325 4.61 –

0.6 0.9751 43.812–72.125–97.305 0.480 1.919 6.27 0.960, 1.048, 0.992

0.9813 7.310–16.775–41.533 0.598 7.997 5.02 –

0.7 0.9725 48.283–77.471–102.735 0.438 1.771 6.87 0.955, 1.056, 0.988

0.9801 7.902–17.145–39.589 0.552 7.639 5.43 –

0.8 0.9696 52.771–83.043–108.661 0.403 1.643 7.47 0.950, 1.064, 0.985

0.9788 8.423–17.539–38.496 0.512 7.281 5.86 –

0.9 0.9664 57.290–88.702–114.934 0.372 1.533 8.08 0.946, 1.073, 0.981

0.9773 8.892–17.943–37.893 0.478 6.938 6.28 –

n ¼ 1, x ¼ 3%, m ¼ 0.04

0.5 0.9710 56.794–94.132–127.601 0.492 1.711 6.10 0.962, 1.047, 0.993

0.9768 9.527–22.210–56.079 0.609 6.115 4.93 –

0.6 0.9681 63.637–102.273–135.765 0.443 1.557 6.79 0.956, 1.056, 0.989

0.9755 10.458–22.769–52.803 0.555 5.804 5.41 –

0.7 0.9648 70.563–111.198–144.858 0.402 1.426 7.48 0.950, 1.064, 0.985

0.9740 11.258–23.375–51.124 0.509 5.492 5.89 –

0.8 0.9611 77.444–119.617–154.521 0.368 1.319 8.18 0.945, 1.074, 0.980

0.9723 11.968–23.997–50.285 0.470 5.194 6.38 –

0.9 0.9571 84.473–128.751–164.642 0.339 1.225 8.89 0.940, 1.085, 0.977

0.9704 12.611–24.619–49.930 0.436 4.916 6.88 –

n ¼ 1, x ¼ 3%, m ¼ 0.05

0.5 0.9648 75.669–122.994–164.549 0.464 1.460 6.47 0.958, 1.051, 0.991

0.9714 12.589–28.099–67.201 0.576 4.792 5.21 –

0.6 0.9614 85.225–135.045–176.802 0.415 1.320 7.25 0.952, 1.062, 0.986

0.9699 13.762–28.927–64.233 0.522 4.508 5.75 –

0.7 0.9574 94.795–146.682–190.065 0.375 1.207 8.02 0.946, 1.072, 0.981

0.9680 14.779–29.793–62.844 0.477 4.235 6.29 –

0.8 0.9530 104.564–159.431–204.072 0.342 1.110 8.80 0.940, 1.083, 0.977

0.9660 15.685–30.661–62.287 0.438 3.983 6.85 –

0.9 0.9480 114.483–172.542–218.648 0.314 1.028 9.59 0.934, 1.095, 0.973

0.9637 16.507–31.515–62.205 0.405 3.752 7.41 –

Bold values indicate under white-noise loading (from Wu et al. [11]).

Italic values indicate under harmonic loading.
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Table 4

Optimal parameters for TLCD designs with n ¼ 2 and x ¼ 1%.

p 1

b1opt
¼
od

os

Harmonic loading

Zopt �10�2=F̂0

� �
x̂p
� �

norm ½ŷp�norm xe (percent) k1;2;3 ¼ o1;2;3=od

95–100–95 percent

White-noise loading

Zoptð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�4=S

F̂

q
Þ E½x̂2

�norm E½ŷ2
�norm

xe (percent) –

95–100–95 percent

(1) (2) (3) (4) (5) (6) (7)

n ¼ 2, x ¼ 1%, m ¼ 0.01

0.5 0.9932 5.837–9.241–12.208 0.394 1.933 2.54 0.982, 1.020, 0.995

0.9943 1.655–3.432–7.500 0.507 10.569 1.97 –

0.6 0.9926 7.564–11.778–15.264 0.348 1.609 2.88 0.979, 1.024, 0.993

0.9940 2.062–4.084–8.434 0.453 8.526 2.21 –

0.7 0.9918 9.721–14.961–19.086 0.310 1.350 3.22 0.975, 1.028, 0.991

0.9936 2.540–4.866–9.652 0.408 6.867 2.45 –

0.8 0.9909 12.444–19.008–23.898 0.279 1.136 3.59 0.972, 1.032, 0.989

0.9932 3.111–5.811–11.179 0.370 5.519 2.70 –

0.9 0.9899 15.907–23.920–30.011 0.252 0.962 3.98 0.969, 1.037, 0.986

0.9927 3.805–6.966–13.081 0.336 4.418 2.98 –

n ¼ 2, x ¼ 1%, m ¼ 0.02

0.5 0.9870 14.806–22.721–29.065 0.312 1.102 3.21 0.976, 1.028, 0.990

0.9887 3.877–7.426–14.726 0.408 4.532 2.45 –

0.6 0.9858 19.466–29.522–37.179 0.272 0.904 3.68 0.971, 1.033, 0.988

0.9882 4.816–8.939–17.065 0.359 3.571 2.78 –

0.7 0.9845 25.316–38.067–47.334 0.240 0.749 4.17 0.967, 1.039, 0.985

0.9875 5.923–10.747–19.963 0.319 2.823 3.13 –

0.8 0.9828 32.657–48.151–60.117 0.213 0.628 4.69 0.963, 1.045, 0.981

0.9867 7.249–12.927–23.518 0.286 2.234 3.50 –

0.9 0.9808 42.127–61.549–76.461 0.191 0.526 5.24 0.958, 1.052, 0.978

0.9858 8.864–15.589–27.894 0.257 1.766 3.89 –

n ¼ 2, x ¼ 1%, m ¼ 0.03

0.5 0.9809 25.782–38.983–49.126 0.269 0.787 3.72 0.971, 1.033, 0.987

0.9833 6.358–11.767–22.389 0.355 2.717 2.82 –

0.6 0.9793 34.121–50.796–63.545 0.233 0.642 4.29 0.966, 1.041,0.984

0.9826 7.892–14.245–26.293 0.310 2.116 3.23 –

0.7 0.9773 44.654–66.069–81.626 0.205 0.529 4.89 0.961, 1.048, 0.981

0.9816 9.704–17.199–31.057 0.273 1.658 3.66 –

0.8 0.9749 58.011–85.024–104.473 0.181 0.440 5.53 0.956, 1.056, 0.978

0.9804 11.877–20.757–36.859 0.243 1.302 4.11 –

0.9 0.9719 75.126–108.496–133.689 0.161 0.368 6.21 0.951, 1.065, 0.974

0.9790 14.521–25.096–43.973 0.218 1.023 4.59 –

n ¼ 2, x ¼ 1%, m ¼ 0.04

0.5 0.9750 38.333–57.364–71.732 0.242 0.618 4.14 0.968, 1.039, 0.985

0.9780 8.929–16.363–30.391 0.319 1.881 3.13 –

0.6 0.9729 51.013–75.498–93.470 0.208 0.501 4.80 0.962, 1.047, 0.981

0.9770 11.196–19.877–35.972 0.277 1.454 3.61 –

0.7 0.9703 66.983–97.815–120.720 0.182 0.413 5.50 0.956, 1.056, 0.977

0.9758 13.766–24.061–42.732 0.244 1.132 4.10 –

0.8 0.9672 87.345–126.387–155.253 0.161 0.342 6.23 0.950, 1.065, 0.974

0.9743 16.846–29.093–50.932 0.216 0.886 4.63 –

0.9 0.9634 113.596–162.983–199.567 0.143 0.285 7.01 0.945, 1.076, 0.970

0.9724 20.594–35.224–60.960 0.193 0.693 5.18 –

n ¼ 2, x ¼ 1%, m ¼ 0.05

0.5 0.9692 52.251–77.724–96.503 0.222 0.512 4.50 0.964, 1.043, 0.983

0.9728 11.824–21.162–38.668 0.293 1.411 3.41 –

0.6 0.9666 69.748–101.984–126.367 0.191 0.415 5.25 0.958, 1.052, 0.978

0.9716 14.676–25.768–46.013 0.254 1.085 3.94 –

0.7 0.9635 91.894–133.177–163.913 0.166 0.340 6.02 0.952, 1.062, 0.975

0.9700 18.045–31.245–54.870 0.222 0.842 4.50 –

0.8 0.9596 120.191–172.850–211.562 0.147 0.282 6.84 0.946, 1.074, 0.971

0.9682 22.080–37.825–65.581 0.197 0.656 5.08 –

0.9 0.9550 156.808–223.993–272.861 0.130 0.234 7.71 0.939, 1.086, 0.967

0.9660 26.986–45.833–78.656 0.175 0.512 5.71 –

Bold values indicate under white-noise loading (from Wu et al. [11]).

Italic values indicate under harmonic loading.
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Table 5

Optimal parameters for TLCD designs with n ¼ 2 and x ¼ 2%.

p 1

b1opt
¼
od

os

Harmonic loading

Zopt �10�2=F̂0

� �
x̂p
� �

norm ½ŷp�norm xe (percent) k1;2;3 ¼ o1;2;3=od

95–100–95 percent

White-noise loading

Zoptð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�4=S

F̂

q
Þ E½x̂2

�norm E½ŷ2
�norm

xe (percent) –

95–100–95 percent

(1) (2) (3) (4) (5) (6) (7)

n ¼ 2, x ¼ 2%, m ¼ 0.01

0.5 0.9922 7.832–13.947–20.061 0.580 2.735 3.45 0.980, 1.022, 0.999

0.9940 1.594–4.453–14.136 0.707 12.553 2.83 –

0.6 0.9915 9.897–16.949–23.593 0.529 2.367 3.78 0.977, 1.026, 0.998

0.9937 2.047–5.147–14.292 0.656 10.731 3.05 –

0.7 0.9906 12.431–20.770–28.106 0.486 2.047 4.12 0.973, 1.030, 0.996

0.9933 2.565–5.987–15.148 0.610 9.068 3.28 –

0.8 0.9896 15.572–25.436–33.806 0.447 1.772 4.48 0.970, 1.034, 0.994

0.9928 3.173–7.006–16.540 0.567 7.591 3.53 –

0.9 0.9883 19.527–31.115–41.032 0.411 1.535 4.87 0.967, 1.040, 0.991

0.9923 3.903–8.251–18.456 0.527 6.296 3.80 –

n ¼ 2, x ¼ 2%, m ¼ 0.02

0.5 0.9858 18.926–31.526–42.787 0.488 1.672 4.10 0.973, 1.030, 0.996

0.9884 3.916–9.136–23.100 0.609 5.986 3.28 –

0.6 0.9844 24.229–39.390–52.042 0.438 1.417 4.57 0.969, 1.036, 0.993

0.9878 4.922–10.718–24.870 0.555 4.965 3.61 –

0.7 0.9829 30.799–48.948–63.678 0.396 1.209 5.06 0.965, 1.042, 0.990

0.9871 6.089–12.622–27.565 0.507 4.091 3.94 –

0.8 0.9810 39.011–60.396–78.307 0.359 1.036 5.57 0.961, 1.048, 0.986

0.9862 7.471–14.923–31.139 0.465 3.352 4.30 –

0.9 0.9788 49.490–75.576–96.910 0.327 0.885 6.12 0.956, 1.055, 0.983

0.9852 9.143–17.733–35.697 0.427 2.728 4.69 –

n ¼ 2, x ¼ 2%, m ¼ 0.03

0.5 0.9795 31.972–51.372–68.440 0.435 1.241 4.60 0.969, 1.036, 0.993

0.9830 6.504–14.075–32.419 0.549 3.797 3.64 –

0.6 0.9776 41.291–64.786–84.670 0.387 1.042 5.17 0.964, 1.043, 0.989

0.9821 8.121–16.645–35.847 0.495 3.098 4.04 –

0.7 0.9754 52.958–82.063–105.041 0.347 0.879 5.77 0.959, 1.051, 0.985

0.9810 10.007–19.726–40.502 0.448 2.519 4.46 –

0.8 0.9727 67.485–102.072–130.649 0.313 0.749 6.40 0.954, 1.059, 0.981

0.9798 12.251–23.444–46.431 0.408 2.041 4.91 –

0.9 0.9696 86.278–129.276–163.327 0.283 0.635 7.08 0.949, 1.068, 0.978

0.9783 14.968–27.978–53.852 0.372 1.645 5.38 –

n ¼ 2, x ¼ 2%, m ¼ 0.04

0.5 0.9735 46.633–73.662–96.477 0.399 0.998 5.01 0.965, 1.041, 0.990

0.9776 9.273–19.216–41.951 0.507 2.726 3.95 –

0.6 0.9711 60.634–94.004–120.701 0.353 0.832 5.68 0.960, 1.050, 0.986

0.9765 11.544–22.841–47.119 0.453 2.200 4.41 –

0.7 0.9682 78.097–118.846–151.052 0.315 0.700 6.37 0.954, 1.059, 0.982

0.9751 14.200–27.179–53.844 0.408 1.774 4.90 –

0.8 0.9648 100.154–149.954–189.338 0.283 0.592 7.09 0.948, 1.068, 0.977

0.9735 17.364–32.406–62.259 0.369 1.427 5.42 –

0.9 0.9607 128.548–190.343–238.265 0.255 0.501 7.87 0.942, 1.079, 0.974

0.9716 21.197–38.773–72.699 0.335 1.143 5.97 –

n ¼ 2, x ¼ 2%, m ¼ 0.05

0.5 0.9676 62.704–98.315–126.570 0.373 0.840 5.37 0.962, 1.046, 0.988

0.9723 12.182–24.521–51.656 0.474 2.100 4.22 –

0.6 0.9647 81.756–124.791–159.591 0.328 0.699 6.11 0.956, 1.055, 0.983

0.9710 15.139–29.256–58.637 0.422 1.682 4.74 –

0.7 0.9612 105.828–159.258–201.056 0.291 0.586 6.88 0.950, 1.066, 0.979

0.9694 18.604–34.911–67.519 0.378 1.347 5.29 –

0.8 0.9571 136.350–202.848–253.479 0.261 0.493 7.70 0.944, 1.077, 0.975

0.9674 22.733–41.716–78.522 0.341 1.078 5.87 –

0.9 0.9521 175.471–257.410–320.504 0.234 0.417 8.57 0.937, 1.089, 0.970

0.9651 27.737–49.996–92.100 0.308 0.860 6.49 –

Bold values indicate under white-noise loading (from Wu et al. [11]).

Italic values indicate under harmonic loading.
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Table 6

Optimal parameters for TLCD designs with n ¼ 2 and x ¼ 3%.

p 1

b1opt
¼
od

os

Harmonic loading

Zopt �10�2=F̂0

� �
x̂p
� �

norm ½ŷp�norm xe (percent) k1;2;3 ¼ o1;2;3=od

95–100–95 percent

White-noise loading

Zoptð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�4=S

F̂

q
Þ E½x̂2

�norm E½ŷ2
�norm

xe (percent) –

95–100–95 percent

(1) (2) (3) (4) (5) (6) (7)

n ¼ 2, x ¼ 3%, m ¼ 0.01

0.5 0.9911 9.639–19.415–30.544 0.686 3.112 4.38 0.978, 1.024, 0.999

0.9938 1.389–5.473–27.177 0.806 12.459 3.72 –

0.6 0.9902 12.071–22.825–34.245 0.639 2.765 4.70 0.975, 1.028, 0.999

0.9934 1.888–6.210–24.327 0.764 11.056 3.93 –

0.7 0.9892 15.006–27.263–39.279 0.596 2.443 5.04 0.972, 1.033, 0.998

0.9930 2.446–7.108–23.718 0.723 9.648 4.15 –

0.8 0.9880 18.611–32.665–45.785 0.557 2.155 5.39 0.968, 1.037, 0.997

0.9924 3.093–8.200–24.342 0.684 8.308 4.39 –

0.9 0.9866 23.109–39.338–54.094 0.520 1.897 5.77 0.965, 1.042, 0.995

0.9918 3.861–9.534–25.871 0.646 7.069 4.64 –

n ¼ 2, x ¼ 3%, m ¼ 0.02

0.5 0.9844 22.848–41.358–59.778 0.599 1.997 5.01 0.972, 1.033, 0.998

0.9881 3.735–10.845–36.151 0.723 6.370 4.15 –

0.6 0.9828 28.850–49.998–69.884 0.548 1.736 5.48 0.967, 1.038, 0.997

0.9874 4.822–12.496–36.038 0.673 5.477 4.46 –

0.7 0.9811 36.185–60.559–82.855 0.504 1.511 5.96 0.963, 1.044, 0.994

0.9866 6.058–14.495–37.807 0.627 4.651 4.79 –

0.8 0.9790 45.273–73.579–99.275 0.465 1.315 6.47 0.959, 1.051, 0.991

0.9857 7.505–16.916–40.955 0.584 3.910 5.14 –

0.9 0.9766 56.921–91.316–120.162 0.429 1.137 7.01 0.954, 1.058, 0.988

0.9846 9.239–19.873–45.399 0.544 3.256 5.51 –

n ¼ 2, x ¼ 3%, m ¼ 0.03

0.5 0.9780 38.082–65.948–91.575 0.546 1.516 5.50 0.967, 1.038, 0.996

0.9826 6.384–16.382–46.662 0.668 4.203 4.49 –

0.6 0.9759 48.439–81.062–109.347 0.495 1.302 6.07 0.962, 1.046, 0.994

0.9816 8.106–19.042–48.543 0.614 3.549 4.88 –

0.7 0.9734 61.161–99.123–131.844 0.451 1.124 6.66 0.957, 1.053, 0.990

0.9805 10.081–22.250–52.478 0.567 2.968 5.29 –

0.8 0.9705 77.153–122.253–160.257 0.413 0.969 7.29 0.952, 1.062, 0.986

0.9792 12.407–26.127–58.145 0.524 2.463 5.73 –

0.9 0.9670 97.408–151.112–196.352 0.378 0.836 7.96 0.946, 1.071, 0.982

0.9776 15.206–30.855–65.608 0.484 2.027 6.20 –

n ¼ 2, x ¼ 3%, m ¼ 0.04

0.5 0.9718 54.843–91.967–125.520 0.509 1.244 5.90 0.963, 1.044, 0.994

0.9772 9.227–22.066–57.520 0.626 3.100 4.79 –

0.6 0.9691 70.128–113.738–151.934 0.458 1.062 6.56 0.958, 1.053, 0.990

0.9760 11.620–25.802–61.317 0.572 2.585 5.25 –

0.7 0.9660 89.135–141.221–185.269 0.415 0.908 7.25 0.952, 1.062, 0.986

0.9745 14.381–30.293–67.446 0.524 2.140 5.72 –

0.8 0.9623 113.024–175.455–227.320 0.377 0.779 7.97 0.946, 1.072, 0.982

0.9728 17.642–35.713–75.713 0.481 1.761 6.23 –

0.9 0.9579 143.526–219.285–280.907 0.344 0.668 8.75 0.941, 1.083, 0.978

0.9708 21.573–42.315–86.316 0.443 1.438 6.78 –

n ¼ 2, x ¼ 3%, m ¼ 0.05

0.5 0.9657 72.953–120.039–161.332 0.480 1.063 6.26 0.960, 1.048, 0.992

0.9719 12.215–27.877–68.544 0.594 2.436 5.05 –

0.6 0.9625 93.715–149.061–197.253 0.430 0.903 6.99 0.954, 1.058, 0.987

0.9704 15.308–32.740–74.267 0.539 2.013 5.57 –

0.7 0.9588 119.720–186.946–242.529 0.388 0.768 7.76 0.948, 1.069, 0.983

0.9687 18.891–38.572–82.644 0.491 1.654 6.11 –

0.8 0.9543 152.278–232.529–299.630 0.351 0.658 8.57 0.942, 1.080, 0.978

0.9666 23.131–45.600–93.590 0.449 1.352 6.68 –

0.9 0.9490 194.318–293.236–372.65 0.319 0.562 9.44 0.936, 1.093, 0.974

0.9642 28.244–54.150–107.428 0.411 1.099 7.29 –

Bold values indicate under white-noise loading (from Wu et al. [11]).

Italic values indicate under harmonic loading.
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Table 7

Optimal parameters for TLCD designs with n ¼ 1/2 and x ¼ 1%.

p 1

b1opt
¼
od

os

Harmonic loading

Zopt �10�2=F̂0

� �
x̂p
� �

norm ½ŷp�norm xe (percent) k1;2;3 ¼ o1;2;3=od

95–100–95 percent

White-noise loading

Zoptð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�4=S

F̂

q
Þ E½x̂2

�norm E½ŷ2
�norm

xe (percent) –

95–100–95 percent

(1) (2) (3) (4) (5) (6) (7)

n ¼ 1/2, x ¼ 1%, m ¼ 0.01

0.5 0.9932 5.837–9.241–12.208 0.394 3.866 2.54 0.982, 1.020, 0.995

0.9943 1.655–3.432–7.500 0.507 42.276 1.97 –

0.6 0.9926 5.791–9.018–11.686 0.348 3.678 2.88 0.979, 1.024, 0.993

0.9940 1.579–3.127–6.457 0.453 44.542 2.21 –

0.7 0.9918 5.684–8.749–11.162 0.310 3.530 3.22 0.976, 1.028, 0.991

0.9936 1.485–2.845–5.644 0.408 46.973 2.45 –

0.8 0.9909 5.530–8.448–10.621 0.279 3.409 3.59 0.972, 1.032, 0.989

0.9932 1.382–2.583–4.969 0.370 49.670 2.70 –

0.9 0.9899 5.331–8.017–10.059 0.252 3.322 3.98 0.969, 1.037, 0.986

0.9927 1.275–2.335–4.385 0.336 52.724 2.98 –

n ¼ 1/2, x ¼ 1%, m ¼ 0.02

0.5 0.9870 14.806–22.721–29.065 0.312 2.204 3.21 0.976, 1.028, 0.990

0.9887 3.877–7.426–14.726 0.408 18.127 2.45 –

0.6 0.9858 14.903–22.602–28.465 0.272 2.066 3.68 0.971, 1.033, 0.988

0.9882 3.687–6.844–13.065 0.359 18.654 2.78 –

0.7 0.9845 14.804–22.260–27.680 0.240 1.960 4.17 0.967, 1.039, 0.985

0.9875 3.463–6.284–11.674 0.319 19.310 3.13 –

0.8 0.9828 14.514–21.400–26.719 0.213 1.884 4.69 0.963, 1.046, 0.981

0.9867 3.222–5.745–10.561 0.286 20.109 3.50 –

0.9 0.9808 14.120–20.630–25.628 0.191 1.819 5.24 0.958, 1.052, 0.978

0.9858 2.971–5.225–9.350 0.257 21.073 3.89 –

n ¼ 1/2, x ¼ 1%, m ¼ 0.03

0.5 0.9809 25.782–38.983–49.126 0.269 1.573 3.72 0.971, 1.033, 0.987

0.9833 6.358–11.767–22.389 0.355 10.869 2.82 –

0.6 0.9793 26.124–38.891–48.652 0.233 1.467 4.29 0.966, 1.041, 0.984

0.9826 6.042–10.906–20.130 0.310 11.054 3.23 –

0.7 0.9773 26.112–38.636–47.733 0.205 1.383 4.89 0.961, 1.047, 0.981

0.9816 5.675–10.057–18.162 0.273 11.339 3.66 –

0.8 0.9749 25.782–37.788–46.433 0.181 1.319 5.53 0.956, 1.056, 0.978

0.9804 5.278–9.225–16.382 0.243 11.722 4.11 –

0.9 0.9719 25.180–36.366–44.810 0.161 1.271 6.21 0.951, 1.065, 0.974

0.9790 4.867–8.412–14.739 0.218 12.209 4.59 –

n ¼ 1/2, x ¼ 1%, m ¼ 0.04

0.5 0.9750 38.333–57.364–71.732 0.242 1.236 4.14 0.968, 1.039, 0.985

0.9780 9.020–16.363–30.391 0.319 7.522 3.13 –

0.6 0.9729 39.057–57.803–71.563 0.208 1.146 4.80 0.962, 1.047, 0.981

0.9770 8.572–15.219–27.541 0.277 7.594 3.61 –

0.7 0.9703 39.170–57.200–70.594 0.182 1.079 5.50 0.956, 1.056, 0.977

0.9758 8.050–14.070–24.989 0.244 7.745 4.10 –

0.8 0.9672 38.820–56.172–69.001 0.161 1.027 6.23 0.950, 1.065, 0.974

0.9743 7.487–12.930–22.637 0.216 7.970 4.63 –

0.9 0.9634 38.075–54.629–66.891 0.143 0.986 7.01 0.945, 1.076, 0.970

0.9724 6.902–11.807–20.433 0.193 8.271 5.18 –

n ¼ 1/2, x ¼ 1%, m ¼ 0.05

0.5 0.9692 52.251–77.724–96.503 0.222 1.025 4.50 0.964, 1.043, 0.983

0.9728 11.824–21.162–38.668 0.293 5.643 3.41 –

0.6 0.9666 53.401–78.082–96.750 0.191 0.949 5.25 0.958, 1.052, 0.978

0.9716 11.236–19.729–35.229 0.253 5.667 3.94 –

0.7 0.9635 53.737–77.879–95.852 0.166 0.890 6.02 0.952, 1.062, 0.975

0.9700 10.552–18.271–32.087 0.222 5.756 4.50 –

0.8 0.9596 53.418–76.822–94.028 0.147 0.845 6.84 0.946, 1.074, 0.971

0.9682 9.813–16.811–29.148 0.197 5.905 5.08 –

0.9 0.9550 52.559–75.078–91.458 0.130 0.810 7.71 0.939, 1.086, 0.967

0.9660 9.045–15.362–26.364 0.175 6.113 5.71 –

Bold values indicate under white-noise loading (from Wu et al. [11]).

Italic values indicate under harmonic loading.
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(2)
 Using the dimensionless amplitude of the external loading F̂0 ¼ F0T2
d=MLh ¼ 0:053, the head loss coefficient is

Zopt ¼ 14.961 � (10�2/0.053) ¼ 2.8228 according to Table 4. The 5% degradation range for the head loss coefficient Zis
from 9.721 � (10�2/0.053) to 19.086 � (10�2/0.053) , i.e., from 1.834 to 3.601.
(3)
 With the choice of b1opt and Zopt, the optimal value of ½x̂p�norm ¼ 0:310 occurs at k1 ¼ 0.975 (o1 ¼ 1.0876 rad/s) and
k2 ¼ 1.028 (o2 ¼ 1.1467 rad/s), which are the two critical excitation frequencies that induce resonant peak amplitudes.
The effective damping ratio xe of the structure equipped with the TLCD becomes 3.22%. Therefore, the damping ratio
has been increased from 1% to 3.22%.
(4)
 Check if the liquid surface displacement exceeds the vertical column length. From Table 4, ½ŷp�norm is 1.350. By Eq. (20),
x̂pðoriginalÞ is 0.066. Therefore, the worst case of jŷ0j is ½ŷp�norm � x̂pðoriginalÞ ¼ 0:0891 m which occurs at k3 ¼ 0.991 (i.e.,
o3 ¼ 1.1055 rad/s).Since the vertical column length of the TLCD is Lv ¼ (L�Lh)/2 ¼ 1.3913 m which is much more than
the worst case of jŷ0j, this design is feasible.
(5)
 By m ¼ rAhðLh þ 2nLvÞ=M (water r ¼ 997 N s2=m4), a horizontal cross-sectional area Ah ¼ 38.35 m2 is thus determined.
This huge cross-section is due to the large first modal mass from 75 stories in total. One possible solution to create a
space for such a huge TLCD is to divide it into few smaller TLCDs with identical configurations. For instance, three
identical TLCDs with a cross-section area Ah ¼ 1.345�9.5 m2 (1.345 m in-plane width and 9.5 m out-of-plane width)
can be designed and installed on the adjacent top three floors that have similar mode shapes.
7. Concluding remarks

In this paper, the optimization for a TLCD installed in a single-degree-of-freedom structure subjected to harmonic
loading is revisited with the aid of a proposed non-iterative analytical solution to expedite numerical computation. The
results from optimization indicated that:
�
 The minimal ½x̂p�norm (optimal case) always occurs when the two resonant peak amplitudes are equal, and this applies
to both damped and undamped structures.

�
 For an undamped structure, by varying the value of Z, there exist two invariant points in the jx̂0j plot and one invariant

point in the jŷ0j plot. When the optimal b1is used, the two invariant points in jx̂0j plot even share the same amplitude,
which is actually the criterion used in the Den Hartog approach for determining the optimal tuning ratio for TMDs.

�
 The optimal head loss is inversely proportional to external force amplitude, which however has no effect on the optimal

tuning ratio b1 and the associated values of ½x̂p�normand ½ŷp�norm.

�
 Using uniform cross-sections for the liquid columns is always the best choice under the same condition of structural

damping, mass ratio and horizontal length ratio of the TLCD.

�
 The optimal performance is the same for the cases with reciprocal cross-section ratios. Their head loss coefficients and

liquid motion amplitudes are related through Eqs. (25) and (26), respectively.

Design tables containing the lists of the optimal parameters for non-uniform (cross-section ratios 2 and 1
2) and uniform

TLCDs were presented as quick guidelines for practical use. The parametric studies observed from the design tables
indicated that:
�
 nZ1: (i) an increase in mass ratio m induces an increase in optimal head loss Zopt but a decrease in optimal tuning ratio
1=b1optð¼ od=osÞ, and also induces a better performance while the two resonant peaks are increasingly apart; (ii) an
increase in horizontal length ratio p induces an increase in optimal head loss Zopt but a decrease in optimal tuning ratio
1=b1optð¼ od=osÞ, and also induces a better performance while the two resonant peaks are increasingly apart.

�
 no1: the same trend applies as in the case of nZ1 except that the value of Zopt does not necessarily increase with the

horizontal length ratio p.
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Appendix A. Equations of motion under external load

The kinetic energy in the structure and each part of liquid columns can be expressed as

TStructure ¼
1
2M _x2
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TLeft vertical column ¼
1
2rðLv � yÞAvð_y

2
þ _x2
Þ

TRight vertical column ¼
1
2rðLv þ yÞAvð_y

2
þ _x2
Þ

THorizontal column ¼
1
2rLhAhðn_yþ _xÞ

2 (A.1)

and the potential energy in the structure and each part of liquid columns can be expressed as

VStructure ¼
1
2Kx2

VLeft vertical column ¼ rgAv �
1
2ðLv � yÞ2

VRight vertical column ¼ rgAv �
1
2ðLv þ yÞ2

VHorizontal column ¼ 0 (A.2)

in which the center line of the horizontal column is taken as the zero potential point; and g is the acceleration due to
gravity. The non-conservative forces in x and y directions can be expressed as

Qx ¼ �C _xþ FðtÞ (A.3)

and

Qy ¼ �
1
2rv_yjv_yjZAh (A.4)

Therefore, the substitution of Eqs. (A.1)–(A.4) into Lagrange’s equations in x and y directions, i.e.,

d

dt

qðT � VÞ

q_x

� �
�
qðT � VÞ

qx
¼ Qx and

d

dt

qðT � VÞ

q_y

� �
�
qðT � VÞ

qy
¼ Qy

leads to the equations of motion in Eqs. (1) and (2).
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